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Abstract—Sensor fault diagnosis is a critical issue in Sensor Net-
works (SNs) since sensor failures could lead to significant errors in
data fusion and state estimation. To address this challenge, we pro-
pose a trust-enhanced distributed Kalman filter (TeDKF) designed
to improve the state estimation performance of SNs under sensor
faults. The TeDKF framework incorporates a novel incremental
density-based (IDB) clustering mechanism into the distributed
diffusion Kalman filter (DDKF) structure, which can support an
intermediate-level feature (innovations) exchange and effectively
fuses reliable sensor nodes. Unlike conventional clustering schemes,
IDB clustering does not rely on majority voting, where more than
half of the nodes must be reliable. Instead, it can effectively detect
and eliminate faulty sensors even in scenarios where the majority
of nodes are compromised. This dynamic clustering builds-up trust
by selectively grouping the reliable nodes based on evolving normal
system behavior, which is considered as a dynamic trust reference to
detect anomalies and isolate faulty sensors irrespective of majority
voting. The experimental results show that TeDKF significantly re-
duces estimation errors and enhances fault tolerance compared to
the traditional Kalman filtering technique. It can handle different
sensor faults, like bias, drift, noise, and stuck faults, especially in
scenarios where most nodes are faulty.

Index Terms—Distributed Kalman filter, incremental density-
based clustering (IDB), sensor networks, sensor faults.

I. INTRODUCTION

S ENSOR Networks (SNs) are extensively used in various ap-
plications such as environmental monitoring, target track-

ing, and industrial automation. SNs comprise several spatially-
distributed, low-cost, energy-efficient sensor nodes with limited
communication and processing capabilities. These sensors in-
teract with the physical world to capture, process, and transmit
data, thus the reliability of such sensors is crucial for ensuring
the safety and accuracy of SNs [1], [2].

However, sensor faults can significantly impact SN operation
and cause performance degradation. Faults may arise due to
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several elements such as hardware malfunctions, harsh environ-
mental conditions, or communication breakdowns.

Besides, there are several types of sensor faults [3], [4],
including
� Bias faults: sensors give inaccurate data due to systematic

measurement errors;
� Drift faults: a gradual variation of the sensor readings over

time results in a progressive accumulation of errors;
� Noise faults: random variations in sensor readings poten-

tially lead to intermittent errors;
� Stuck faults: sensors become unresponsive and contin-

uously reflect some fixed values, not capturing the real
changes in the monitored environment.

� Spike faults: show sudden, large deviations from normal
readings that typically only last for one or a small number
of time steps; often caused by electromagnetic interference
or transient faults.

� Missing data faults: record missing sensor data at certain
time steps due to packet loss, communication failure, or
hardware interrupts.

� Gain faults: when the output of sensors is scaled incorrectly
(e.g., too large or too small) usually because of amplifica-
tion or calibration circuitry faults.

Amongst the numerous sensor fault types, bias, drift, noise,
and stuck-at faults (see Fig. 1) are identified as the most prevalent
and impactful in long-term industrial monitoring systems. There
is a substantial amount of literature that supports their domi-
nance in terms of frequency and diagnostic relevance [5], [6],
[7], [8], [9], [10]. These works recognize these faults as the most
frequent occurring in practical systems and characterize them
as persistent faults owing to their chronic nature and substantial
diagnostic importance [11], [12], [13]. Accordingly, this study
focuses on these fault types due to their practical importance
and diagnostic relevance. On the other hand, transient faults like
spikes, missing data, and gain anomalies are generally handled
by either preprocessing (e.g., outlier removal, interpolation,
calibration) or system-level redundancy, hence are less critical
in long-term degradation analysis [14], [15], [16].

Effective sensor fault diagnosis is essential to uphold the relia-
bility, safety, and operational continuity of sensor network-based
systems. Faulty sensor data has the capability to greatly com-
promise system performance and decision-making and create
safety hazards or financial loss. As size and complexity grow
in sensor networks, distributed and adaptive fault detection is
even more important to handle faults in real time with little
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communication overhead and maintenance expense. Therefore,
developing fault-tolerant diagnostic techniques is important to
enable precise state estimation and fault-tolerant performance
in faulty and dynamic operating conditions.

Techniques for detecting and mitigating sensor faults in SNs
are generally classified into model-based [17] and data-driven
approaches [8], [18]. Although data-driven methods are highly
effective, they often require extensive training data. Moreover,
they are computationally intensive, which limits their suitability
for real-time applications [19]. In contrast, model-based ap-
proaches rely on mathematical system models to estimate the
expected sensor behavior. Sensor faults in these techniques are
identified by comparing the actual sensor measurements with
the predicted values of the model.

Among model-based approaches, the Kalman filter (KF)
is a highly effective technique to detect and estimate sensor
faults [20]. There are two major architectures for implementing
KF: centralized and distributed [21]. In the centralized frame-
work, a single filter processes measurements from all sensors.
Although this approach may give accurate results, it is not scal-
able for large SNs due to the communication and computational
constraints [22], [23]. Alternatively, distributed architecture is
more fault-tolerant and provide scalable solutions. Every sensor
node runs a local KF and shares information with the neighbor-
ing nodes, allowing the network to jointly estimate the system
state. This approach markedly alleviates the communication
load while improving fault tolerance, rendering it particularly
appropriate for SNs [24], [25]. Although the decentralized archi-
tecture may resemble federated learning (FL), it fundamentally
differs in purpose: FL is a data-driven, privacy-preserving model
training framework, while our approach is model-based and
designed for real-time state estimation and fault detection based
on physical system dynamics.

Distributed KFs have various types including consensus KF
(CKF) [26], federated KF (FKF) [27], and distributed diffusion
KF (DDKF) [28]. Although CKF utilizes a consensus technique
to combine local estimates from neighboring nodes, it suffers
slow convergence and substantial communication overheads,
particularly in large networks [29]. On the other hand, FKF
reduces communication overhead by enabling each local filter
to operate independently, but it may lead to suboptimal perfor-
mance because of a lack of inter-node cooperation [30]. Further,
DDFK employs a diffusion strategy for exchanging information
with immediate neighbors, achieving a balance between com-
munication efficiency and estimation accuracy, thus making it
effective for sensor fault diagnosis in SNs [24].

Several methods have been proposed to increase the robust-
ness and efficiency of distributed KFs for sensor failure diagnosis
in SNs. For instance, a fast finite-time convergence distributed
KF algorithm is presented in [31] to enhance convergence speed,
however, it might not be appropriate for highly dynamic settings
with frequent sensor failures. Similarly, a distributed Bayesian
fault diagnosis technique based on sequential Monte Carlo fil-
tering is designed in [32], offering robust fault identification but
at the cost of high computational overhead, limiting its suit-
ability for real-time applications. Moreover, a consensus-based
distributed KF is introduced in [33] to improve global state esti-
mation, yet it faces slow convergence issues, making it less ideal

for bandwidth-constrained SNs. The authors in [34] developed a
node selection strategy for distributed KF in heterogeneous sen-
sor networks to reduce computational and communication costs,
nevertheless, it may not handle changes in topology or dynamic
sensor faults. Furthermore, a diffusion KF based on a covariance
intersection approach is proposed in [35] to improve estimation
performance, though this approach can introduce additional
computational complexity. In [36], a trust-based distributed KF
(TDKF) technique is explored for estimating oscillation modes
in power systems with faulty measurements, however, its per-
formance may be impacted by subjective threshold selection.
Likewise, [37] developed a distributed KF technique based on
Adaptive clustering; however, its effectiveness may deteriorate
in networks with substantial sensor failures or shifting topolo-
gies. In [38], a distributed Tobit Kalman filter is developed to
address the issue of delayed and censored measurement while
remaining vulnerable to undetected sensor faults. Similarly, [39]
develops a maximum correntropy criterion-based distributed
Kalman filter for robustness against impulsive noise, but notably
lack systematic fault detection mechanisms in the sensors. More-
over, [40] proposes an event-triggered consensus control against
DoS attacks for multi-agent systems but based on a priori known
fault models and attack/fault isolation that cannot be realized in
the presence of concurrent sensor faults and cyber attacks. In
addition, [41] suggests a distributed fault detection approach for
natural pipelines system, but it fails under multiple sensor faults
and domain changes.

Recent development in the sensor fault diagnosis has sug-
gested the incorporation of distributed KF with clustering
techniques, which would improve the accuracy and efficiency
in fault detection. These techniques usually classify the sen-
sor estimates into trusted and untrusted clusters. In [42], a
TDKF approach based on K-means clustering is designed for
target tracking under sensor faults or attacks. The K-means
clustering algorithm classifies all the local estimates gener-
ated by the nodes into trusted and untrusted clusters and se-
lecting the trusted set using a majority voting system. Sim-
ilarly, [43] introduced a trust-based distributed KF technique
utilizing the Gaussian mixture model (GMM) which classifies
a node and its neighboring nodes into trusted and untrusted
sets by the majority voting. Moreover, a trust-based clustering
fusion strategy was proposed by using iterative Wasserstein
average-based consensus in [29] for diagnosing sensor faults in
SNs.

One major limitation of these clustering-based data fusion
methods is their reliance on majority voting, where the cluster
with the maximum number of elements is considered the trusted
set. All these methods require the majority of sensor nodes to
be reliable, with only a minority compromised. However, in
large-scale SNs with hundreds/thousands of nodes, it is highly
infeasible to ensure a majority of sensors are trusted; therefore,
there is a need of trust-based schemes independent of majority
voting. Moreover, these methods typically remove faulty nodes
in general without providing any estimate that could provide
compensation for further degraded state estimation. Another dis-
advantage is that clustering techniques categorize sensor nodes
into trusted/untrusted groups even when no fault occurs. This
probably excludes many accurate state estimations of reliable
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nodes in data fusion and hence reduces the overall estimation
performance. In addition, existing distributed Kalman filtering
(DKF) algorithms operate at varying fusion levels—low-level
(exchanging raw measurements), high-level (exchanging state
estimates), and very high-level (exchanging state estimates and
covariances)—with increasing accuracy but at the cost of cum-
bersome communication overhead. To balance this trade-off,
there is a need for a medium-level fusion strategy that exchanges
intermediate features, providing an efficient, yet dependable
alternative with best estimation accuracy and communication
efficacy, particularly under faulty conditions.

To address these challenges, we propose a novel trust-
enhanced distributed Kalman filter (TeDKF) approach for robust
sensor fault detection in SNs. Our TeDKF approach incorporates
a novel incremental density-based (IDB) clustering strategy to
detect faulty sensor nodes over large-scale dynamic networks—
that is, networks where system states and sensor measurements
evolve over time, and the reliability of nodes may alter. The
IDB clustering creates a dynamic cluster of reliable nodes that
continuously update as new data become available, making it
highly suitable for real-world dynamic settings. In addition, our
approach does not depend on majority voting scheme and is
sufficiently resilient when majority of sensor nodes are faulty.
The proposed architecture uses a DDKF, where each node
can estimate locally the system’s state (e.g., position, velocity)
and allowing the exchange of information with the immediate
neighboring nodes. Although direct communication is limited to
immediate neighboring nodes, the method remains applicable
to networks with widely spaced sensors, as long as sensors
constitute a connected network allowing information to diffuse
between nodes. Unlike the traditional methods that rely on high-
level fusion, our approach utilizes medium-level fusion. This
method only fuses the innovation (or residual) generated from
the measurement, avoiding the fusion of local state estimates and
covariance. Consequently, this innovation-based fusion strategy
significantly reduces computational and communication load
without sacrificing accuracy.

In the proposed approach, trust is treated as a dynamic and
continuously adaptive attribute, moving beyond the static major-
ity voting assumption employed in existing methods [29], [42],
[43]. The proposed evolving trust scheme allows to validate the
reliability of each node based on evolving context-aware trust
reference, rather than employing static thresholds or majority
consensus. In proposed approach, the trust reference is initially
formed by a group of reliable sensor nodes whose behavior
aligns with the expected system dynamics during nominal oper-
ating conditions. It serves as a contextual baseline to determine
the trust value of incoming data across the network. As the
system operates further, new information is gained, the trust
reference is increasingly updated towards reflecting the latest
and most stable sensing patterns. This continuous update allows
for the detection of marginal or slowly formed sensor faults, as
well as preventing the early elimination of temporarily deviated
nodes. Hence, the proposed framework presents a robust and
flexible trust mechanism that significantly improves the correct-
ness and robustness of fault detection in dynamic and potentially
unstable sensor network environments.

A rapid comparison of our proposed technique with existing
methods is provided in Table I. Moreover, the contributions of
this work can be summarized as follows:
� We propose a novel Trust-enhanced Distributed Kalman

Filter (TeDKF) approach that tackles fault tolerance in
SNs. In contrast to traditional methods based on majority
voting schemes [42], [43], our strategy employs dynamic
confidence weighting that periodically assesses and adjusts
each node’s reliability in real time. This allows effective
detection of simultaneously occurring multiple fault modes
including bias, drift, noise, and stuck faults and still allows
the system to function when most of the nodes are faulty.

� Our work introduces an efficient medium-level fusion strat-
egy that bridges the gap between high-overhead and low-
resilience existing methods. Through strategic exchange
of innovation vectors (residuals) among nodes, we have
the two-fold advantage of: (1) considerably reduced com-
munication bandwidth (lower than high-level fusion) with
high estimation accuracy preserved, and (2) inherent fault
detectability via online residual analysis.

� We introduce a novel IDB clustering technique that can ef-
fectively handle dynamic and scale-large network cluster-
ing. (IDB) clustering adaptively finds reliable node clusters
via local density estimation and hierarchical propagation of
trust, which self-tunes to network dynamics. This removes
the need for majority voting altogether while ensuring
operational resilience even if more than 50% of nodes
are faulty - a key improvement for large deployments in
unreliable environments.

The paper is organized as follows: Section II explains the
problem formulation and provides an overview of the preliminar-
ies related to KF; the proposed TeDKF technique for distributed
state estimate in SNs is presented in Section III; Section IV
presents the numerical results; and some concluding remarks
are provided in Section V.

II. PROBLEM FORMULATION

We consider a linear state-space model for a SN consisting of
N connected sensor nodes. The state-space representation for
the ith sensor node (i = 1, 2, . . . , N ) at the kth time instant is
expressed as

xi
k+1 = Ai

kx
i
k +Bi

ku
i
k +wi

k, (1)

zik = Hi
kx

i
k + vi

k, (2)

wherexi
k ∈ Rn,ui

k ∈ Rm and zik ∈ Rp represent the local state
vector, the control input, and the measurement vector corre-
sponding to the ith sensor node, respectively. Further, the matri-
ces Ai

k ∈ Rn×n, Bi
k ∈ Rn×m and Hi

k ∈ Rp×n denote the state
transition matrix, the control input matrix, and the measurement
matrix, respectively. The vectors wi

k ∈ Rn ∼ N (0,Qi
k) and

vi
k ∈ Rp ∼ N (0,Ri

k) specify the process and the measurement
noise, respectively.

In case of sensor fault, the measurement model is modified as

zik = Hi
kx

i
k + vi

k + f ik, (3)
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TABLE I
COMPARISON OF THE PROPOSED METHOD WITH EXISTING TECHNIQUES

Fig. 1. Common types of sensor faults.

where f ik ∈ Rp represents the sensor fault vector, capturing
the deviations caused by the sensor faults. The detection and
accommodation of this fault vector is highly challenging due
to its unknown and variable nature. These sensor faults can
significantly degrade the accuracy of state estimation, therefore
it is essential to eliminate their influence.

The primary objective of this work is to identify a wide range
of sensor faults and suggest a distributed KF algorithm that
can deliver reliable state estimates x̂k under their occurrence.
We propose a novel distributed architecture for handling sensor
faults within connected SNs, as discussed in the next section.

III. PROPOSED METHOD

The proposed architecture incorporates the DDKF algorithm
with IDB clustering, as depicted in Fig. 2. Initially, every node
in the SN performs the standard KF time update to predict
the system state and generates the innovation, representing

Fig. 2. Proposed architecture.

the difference between the estimated and actual measurements.
The IDB clustering algorithm then analyzes the innovations to
identify reliable and faulty nodes. Subsequently, the innovations
from the reliable nodes are fused to form a global innovation,
which is utilized by each node to perform the measurement
update. The proposed technique is outlined in Algorithm 1 and
based on the following steps:

Initialization: Set the initial values for the state estimate
(x̂i

0|0 ∈ Rn) and covariance (Pi
0|0 ∈ Rn×n) of each node based

on the use case.
Time Update (Prediction): For the ith node at the kth time

instant, the a priori state estimate and covariance matrix are
evaluated as

x̂i
k|k−1 = Ai

k−1x̂
i
k−1|k−1 +Bi

k−1u
i
k−1 +wi

k,

Pi
k|k−1 = Ai

k−1P
i
k−1|k−1A

i T
k−1 +Qi

k−1. (4)

Innovation Generation: The ith node generates an innovation
(yi

k ∈ Rp) using the measurement (zik) as

yi
k = zik −Hi

kx̂
i
k|k−1. (5)

The innovations from all nodes are subsequently sent to a central
fusion center, where IDB clustering is performed to identify the
innovations of the reliable nodes.
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Algorithm 1: TeDKF.

1: Input: A priori state estimate x̂i
k−1|k−1, covariance

matrix Pi
k−1|k−1, process noise covariance matrix Qi

k,

measurement noise covariance matrix Ri
k, state

transition matrix Ai
k−1, measurement matrix Hi

k,
control input ui

k

2: Time Update:
3: for each ith node do
4: Estimate x̂i

k|k−1 and Pi
k|k−1 using (4)

5: end for
6: Innovation Generation:
7: for each ith node do
8: Compute yi

k using (5)
9: end for

10: Apply IDB Clustering: Use Algorithm 2
11: Global Innovation Fusion:
12: Compute yk using (10)
13: Measurement Update:
14: for each ith node do
15: Estimate x̂i

k|k and Pi
k|k using (11)

16: end for
17: Output: Fault-free a poteriori state estimate and

covariance matrix

IDB Clustering: Dynamic clustering adaptively groups and
updates data points or entities based on the evolving similar-
ities/characteristics of system dynamics. A cluster of reliable
nodes is initially formed assuming that most data points are
accurate, with minimal noise or outliers. The cluster continu-
ously updates with new data from reliable nodes, serving as a
reference for evaluating anomalous data points and enabling the
identification of faulty nodes. The method is designed to group
ML features, such as innovations generated by each local KF,
expected to remain relatively invariant for non-faulty nodes as
the system evolves.

At the kth time, the set of reliable data points (Yc
k ∈ Rp×Nt )

must satisfy the criterion that its detection metric (ei) falls below
a specified threshold (τ ), expressed as

Yc
k =

{
yi
k | ei ≤ τ

}
. (6)

The detection metric (ei) is defined using the mutual reachability
distance (dmreach(y

i
k,y

j
k−1)), which evaluates the connectivity of

a data point (yi
k) relative to the set of reliable points (yj

k−1 ∈
Yc
k−1) identified during the (k − 1)th time instant. The detection

metric for the ith data point is:

ei = min
j

dmreach(y
i
k,y

j
k−1), (7)

with the mutual reachability distance between two innovations
(yi

k and yj
k−1) being calculated as

dmreach(y
i
k,y

j
k−1) = max

(
dcore(y

i
k), dcore(y

j
k−1), dij

)
, (8)

where dij = ‖yi
k − yj

k−1‖2 is the Euclidean distance between
the ith node and the jth node, and the term dcore(y

i
k) = ‖yi

k −
yγ
k−1‖2 represents the core distance of the ith node from the γth

nearest neighboring data point, with γ denoting the minimum

Algorithm 2: IDB Clustering.
1: Input: Trusted cluster containing reliable set of

innovations Yc
k−1 at (k − 1)th time instant, new set of

innovations (test data points) at kth time instant
Ytest
k = {y1

k,y
2
k,y

3
k, . . . ,y

i
k, . . . ,y

N
k }

2: if k==1 then
3: Yc

k−1 = Ytest
k

4: end if
5: for each test data point yi

k in Y test
k do

6: for each data point yj
k−1 in Yc

k−1 do
7: Compute mutual reachability distance between yi

k

given yj
k−1 using (8)

8: end for
9: end for

10: Compute adaptive threshold using (9)
11: for each test data point yi

k in Y test
k do

12: Update the cluster Yc
k using (6)

13: end for
14: Output: Trusted cluster Yc

k at kth time instant

number of data points needed to define the local density around
a given data point yi

k. Using these parameters, the mutual reach-
ability distance ensures that only the data points that are both
close to each other and located within dense regions are grouped.
This approach effectively eliminates isolated data points or
outliers and enhances the reliability of the clustering process.
The steps involved in the IDB clustering are summarized in

Algorithm 2. At the initial time step k = 1, the IDB clustering
assumes that all data points are accurate and each node has
fault-free measurement. This ensures a low detection metric
given in (7), allowing reference cluster formation of reliable data
points, which serves as a foundation for future predictions and
updates as new reliable data points are available. As the system
progresses to subsequent time steps, the reliable cluster (Yc

k−1)
at the previous time instant is used to validate the reliability
of a new data point (yi

k). If the detection metric between the
new data point and the reliable points in the existing cluster
falls below the threshold (τ ), the data point is deemed reliable
and used to update the reliable cluster (Yc

k) at the current
time instant. Conversely, if the detection metric exceeds the
threshold, the data point is rejected, indicating the presence of
a potential fault. Due to the availability of a fault-free reference
cluster at each step, this technique allows us to effectively
identify faults even in scenarios where the majority of nodes is
faulty1.

To further enhance the detection performance of the IDB
clustering, we implement a dynamic threshold (τ ) which adapts
to the changing data distribution and improves the robustness of
the clustering process. The adaptive threshold is determined by
averaging the detection metric across all (faulty and non-faulty)
nodes and mathematically given as

τ =
1

N

N∑
i=1

ei + λ, (9)

1This issue has not been addressed in existing works [42], [43].
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where λ is a constant tuning parameter that adjusts the threshold
sensitivity, and N represents the total number of nodes. In
fault-free situations, detection metrics are close to the mean,
and the threshold—set just above it through parameter λ—keeps
false positives away. During faults, metrics of faulty nodes
deviate significantly, and an appropriately tuned λ maintains
the threshold sensitive enough to detect such outliers without
misclassifying normal nodes. The method assumes at least 10%
non-faulty node at time k > 1, where the low detection metric
of non-faulty nodes helps maintain a suitably low threshold,
enabling effective fault diagnosis even when most nodes are
faulty.

Fusion of Innovations: The innovations corresponding to the
data points in the trusted cluster (Yc

k), generated using the
IDB clustering approach, are fused to create a global fault-free
innovation (yk ∈ Rp) as

yk =
1

Nt

∑
i∈trusted nodes

yi
k, (10)

which is shared with all sensor nodes to perform the mea-
surement update while ensuring that all sensor nodes perform
accurate state estimates using reliable innovations.

Measurement Update: For the ith node, a posteriori local state
estimate and the covariance matrix using the Kalman gain matrix
(Ki

k) and the innovation covariance matrix (Si
k) are evaluated

as

Si
k = Hi

kP
i
k|k−1H

i T
k +Ri

k,

Ki
k = Pi

k|k−1H
i T
k Si

k,

x̂i
k|k = x̂i

k|k−1 +Ki
kyk,

Pi
k|k = (I−Ki

kH
i
k)P

i
k|k−1. (11)

IV. NUMERICAL RESULTS

We consider a SN with 10 connected sensor nodes employing
a linear heat transfer dynamics system that monitors temperature
at 4 separate spatial points, leading to a state vector with 4
components. The state transition matrix (Ai

k), which governs
the heat transfer dynamics in the system, is

Ai
k =

⎡
⎢⎢⎢⎣
0.8 0.1 0.0 0.0

0.1 0.8 0.1 0.0

0.0 0.1 0.8 0.1

0.0 0.0 0.1 0.8

⎤
⎥⎥⎥⎦ ,

and the measurement matrix is Hi
k = I ∈ R4×4. The process

and measurement noise covariance matrices are set to Qi
k =

0.05I ∈ R4×4 and Ri
k = σI ∈ R4×4, respectively, where σ rep-

resents the noise standard deviation allowing to analyze dif-
ferent signal-to-noise ratios (SNRs). The initial state estimate
and covariance matrix are chosen as x̂i

0|0 = [20, 22, 24, 23] and

Pi
0|0 = I ∈ R4×4, respectively. These settings are based on

the reference thermal system model in [46] which provides
a realistic basis for distributed temperature phenomenon and
sensor response modeling. Although actual noise will typically
not obey the Gaussian assumption, we impose it here as a

general and analytically convenient approximation of modeling,
particularly well-suited to Kalman filter-based schemes applied
to thermal systems. We set γ = 5 (number of data points needed
to define local density) empirically based on the accuracy of fault
detection performance. This value provided the best trade-off
between fault sensitivity and noise immunity.

The fault-free measurement (zjk) for the jth sensor at the kth
time instant is generated by adding zero-mean white Gaussian
noise, namely qjk, to the initially generated values (xj

k), which
are free from both noise and faults. The fault-free measurement
is expressed as

zjk = xj
k + qjk.

To evaluate the fault diagnosis performance of the proposed
technique, we introduce 4 types of synthetically generated sensor
faults into the simulated data to emulate both hard and soft
failures, based on the following mathematical models.

Bias Fault: A constant bias is added to the sensor measure-
ments over M consecutive samples, defined as

z
j(f)
k =

{
zjk + b, 0 ≤ k −m ≤ M

zjk, otherwise
,

where z
j(f)
k is the faulty measurement associated with the jth

node, M represents the duration (in samples) over which a
constant bias b is added, and m is the onset time of the fault.

Drift Fault: The sensor measurements gradually deviate from
the true values over time, expressed as

z
j(f)
k =

⎧⎪⎨
⎪⎩
zjk + bd(k−m+1)

M , 0 ≤ k −m ≤ M

zjk + bd, M ≤ k −m ≤ M +K

zjk, otherwise

,

where M denotes the number of samples during which the drift
fault is introduced and K is the number of samples over which
the drift fault maintains the saturated bias level bd. We emphasize
the drift fault by assuming M > K.

Noise Fault: Random noise is added to the sensor measure-
ments, introducing unpredictable fluctuations, given as

z
j(f)
k =

{
zjk + n(k), 0 ≤ k −m ≤ M,

zjk, otherwise,

where n(k) is a noise vector with zero mean and variance σn,
characterizing the measurement uncertainty.

Stuck Fault: The sensor continuously reports a fixed value,
defined as

z
j(f)
k =

{
zjm, 0 ≤ k −m ≤ M

zjk, otherwise
.

We evaluate the performance of our proposed techniques for
various sensor fault scenarios, focusing on both weak and strong
faults. For bias and drift faults, the absolute bias value b is
uniformly distributed between 20% to 40% (resp. 60% to 90%)
for weak (resp. strong) faults, with a randomly-assigned positive
or negative sign. Similarly, the variance matrix σn follows the
same distribution values for noise faults. Fault durations M and
K are randomly selected between 6 and 10 samples. Further,
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TABLE II
COMPARING THE RMSE OF DIFFERENT TECHNIQUES AT DIFFERENT SNR

VALUES UNDER NON-FAULTY SCENARIO

uniform distribution is used for fault level and duration, which
allows a thorough evaluation of the proposed technique across
diverse sensor fault scenarios. Faults can occur randomly in time
and across sensors, but their characteristics remain fixed once
introduced, while the noise level (via SNR) is kept constant
across all sensors and time steps.

Several baseline approaches, including DDKF with K-means
clustering [42], GMM-based clustering [43], and the standard
DDKF, are utilized for comparison. Additionally, we compare
our proposed method against baselines featuring different levels
of data fusion, namely very high-level (VHL) fusion, which
fuses both the state vector and covariance matrix, and ML fusion,
which only fuses the innovations. These comparisons offer a
comprehensive assessment of the performance and robustness
of our approach across various fusion strategies.

To assess the state estimation performance in the fault-free
scenario, we compute the root mean squared error (RMSE) at
three different SNR values, i.e.,−5 dB, 0 dB, and 5 dB, as shown
in Table II. Furthermore, the RMSE results for the fault-free
scenario at a fixed SNR of 1 dB are presented in Fig. 3. These
results clearly illustrate that our proposed method achieves
RMSE close to the traditional DDKF technique for VHL and
ML fusions and is lower than other clustering-based approaches.
Other clustering-based techniques classify sensor nodes into
trusted and untrusted groups even in non-faulty scenarios that
potentially exclude accurate state estimates from reliable nodes
during data fusion, leading to degradation in estimation perfor-
mance. We evaluate the RMSE of the proposed method and
compare it to other baseline techniques under different fault
scenarios.

Moreover, the impact of the number of faulty nodes on the
estimation accuracy is examined by analyzing the RMSE for

Fig. 3. RMSE comparison of proposed and baseline techniques without sensor
fault at 1 dB SNR.

Fig. 4. RMSE comparison of proposed and baseline techniques with bias fault
at 1 dB SNR.

scenarios with a few faulty nodes (up to four) and a majority of
faulty nodes (up to eight), as shown in Fig. 4. In the case of a
few faulty nodes, our approach achieves similar results as other
clustering-based baselines. However, when most faulty nodes
are considered, our method consistently achieves a significantly
lower RMSE than other baselines.

These findings highlight the effectiveness of our approach in
maintaining accurate state estimation even in the presence of
sensor faults. Traditional methods that rely on majority voting,
require a majority of reliable nodes for accurate state estimation.
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Fig. 5. RMSE comparison of proposed and baseline techniques at 1 dB SNR
(upto 8 faulty nodes).

Consequently, baseline techniques fail to identify and isolate
faults when most nodes are faulty. In contrast, our proposed
method consistently attains lower RMSE even as the proportion
of faulty sensors increases. Similarly, we assess the RMSE for
scenarios involving weak and strong drift, weak and strong noise,
and stuck-at faults, focusing on cases where most nodes are
faulty. The results in Fig. 5 demonstrate that our proposed
technique consistently surpasses the baseline methods, achiev-
ing notably lower RMSE across all fault types. This highlights
the increased accuracy and effectiveness of our approach in
handling various fault conditions, particularly when most nodes
are compromised.

We use accuracy as detection metrics which is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP (true positives) is the number of faulty nodes that
are identified correctly, TN (true negatives) is the number of
healthy nodes that are classified correctly, FP (false positives)
is the number of healthy nodes that are incorrectly identified as
faulty, and FN (false negatives) is the number of faulty nodes

Fig. 6. ROC curves illustrating the performance of the proposed techniques
across various types of sensor faults.

that are not detected by the fault detection algorithm. This metric
computes the overall fault detection accuracy for each tested
scenario.

We evaluated the accuracy of the proposed method against
baseline techniques under fault scenarios involving both a small
number of faulty nodes (up to four) and a majority of faulty nodes
(up to eight). Table III presents the results for the scenario with
fewer faulty nodes, where the proposed approach maintains high
accuracy as compared to baseline techniques. In cases where the
majority of faulty nodes are considered, as shown in Table IV,
our method still exhibits higher accuracy as compared to base-
lines that demonstrate a significant decline in performance, as
they fail to handle scenarios with a majority of faulty nodes.

To further assess the fault detection capability of our approach,
we generate the receiver operating characteristic (ROC) curve,
for different fault scenarios and types, as shown in Fig. 6.
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TABLE III
COMPARING THE ACCURACY (%) OF DIFFERENT TECHNIQUES WHEN UP TO 4 NODES ARE FAULTY

TABLE IV
COMPARING THE ACCURACY (%) OF DIFFERENT TECHNIQUES WHEN UP TO 8 NODES ARE FAULTY

This curve demonstrates the true positive rate against the false
positive rate for different tuning parameter values (λ) of the
adaptive threshold defined in (9). The ROC curves illustrate that
the proposed technique achieves a higher value true positive rate
at a low false positive rate, even in the presence of weak sensor
faults.

V. CONCLUSION

This paper proposes a novel TeDKF method for the sen-
sor fault diagnosis and estimation in SNs. By combining an
innovative IDB clustering method with DDKF in the TeDKF
framework and leveraging intermediate (innovation-based) fu-
sion, the technique effectively detects and isolates faulty sensor
measurements. Besides, the proposed innovation-based data
fusion approach remarkably reduces computational cost without
any degradation in estimation performance. The empirical re-
sults have proved the effectiveness of proposed TeDKF method,
which demonstrate significantly reduced estimation errors along
with improved fault tolerance for a broad range of fault types
such as bias, drift, noise, and stuck faults. Future work will focus
on distributed sensor fault diagnosis for large-scale nonlinear
systems.
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